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In the presenl work we shall limit ourselves to the symmetrical case. The non-sym- 

We consider the problem of the intersection of two plane shock wavea in 
space. We show that, unlike the two-dimensional case which has a unique 
solution, in space there exists a region of variation of parameters defin- 
ing the problem, in which two solutions with supersonic velocity behind 
the corresponding systems of shock waves are possible. 

Let us consider the intersection of two plane shock waves. The 
condition of equilibrium of the f!ow behind them requires that, generally 
speaking, shock waves should be refracted on passing through the plane 
of intersection, and the angle between them should, with one exception 
given in [I], also change. 

fl the initial direction of the flow is 
y_ m The symmetrical case whe 

parallel to the plane blsectrng the 
angle between the discontinuities, 

‘I - ‘2 ‘\ is equivalent to the reflection of 
the shock wave from a wall. 

metrical case is basically similar to the symmetrical one, and its qualitative solution should 
produce analogous results. 

By analogy with the case of reflection from the wall, we shall call the shock wave 

in front of the intersection ‘incident’, and behind the intersection ‘reflected’. We shall 
assume that both, incident and reflected waves, are weak. Here ‘weak’ means an oblique 
shock wave, the velocity on both sides of which, is supersonic. We know, that out of two 
solutions of the system of equations for an oblique shock wave, is the weak shock wave 
that occurs on the wedge. 

If we take the value of M as finite, then the condition of the flow being supersonic 
behind the shock wave narrows the region in which weak shock waves exist somewhat, but 
the difference when compared with the value usually accepted in the classical gas dynamics 
[I], is small. The corresponding difference in the maximum angle of the wedge, does not 
exceed 0.5’. 
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The parameters defining the problem of jlomoj 

intersection of two plane shock waves in space 

are : the angle 2~ between their planes, the 

numberM,__of the undisturbed flow and the angle 

@ of the inclination of its velocity vector to the 

line of intersection of the shock waves (fig. 1). 
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FIG. 2 FIG. 3 

The region of variation of parameters Mm, #3 and y is limited by the condition of 

existence of the incident and reflected shock waves 

The value of y1 mal is determined later from the condition of regularity of reflection of the 

shock waves. 

With the above parameters, the angle between the planes of the shock waves and the 

velocity vector of the undisturbed flow is equal to 

or = sin- t (sin /I sin yJ (2) 

Obviously, within the considered flow, the component of velocity projected on the line of 

intersection of shock waves, has a constant value equal to Vm COB 6. Consequently, the 

parameters of the flow can be computed over the plane perpendicular to this line and 

moving down it with the velocity equal to V, cos p. We shall consider the problem in this 

plane with the view determining true values of the density, pressure and temperature in the 

surrounding space. 

Slip velocity should be accounted for in the calculations of the direction and magnitude 

of velocity. 

The component of the flow velocity in the plane perpendicular to the line of inter- 

section of the shock waves, corresponds to the number MI = Mm sin p, while the angle 

it forms with the direction of the incident wave is equal to y1 (fig. lb). 

Direction of the component of the velocity behind the reflected wave V, coincides, in 
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the symmetrical case, with the direction of the velocity componen 

of the undisturbed flow V, = V, cos @ , hence in the plane under 

consideration, the angle of rotation 6 of velocity across the in- 

cident and reflected wave, has the same numerical value. From 

the equations for an oblique shock wave, if follows [I] 

V, cos 71 cos 72 

- = cosfyl-66) cos(ya--66) VI 
(3) 

Here y2 is the angle between the incident velocity and the 

reflected shock wave 
(4) 

2 f-+.-2.(, 
tan (Q - 6) = ;+t.. ri + - x + 1 Mi’=tmqi 

MiTl = ’ 
2 (x- 1)- 1 + M 

P 
s1I.k :o 3 * 2. 

90 
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Fig. 4 
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(8) 

Here x is the ration of specific heats, indices i = 1 and 2 denote the parameters of the 

incident and reflected shock wave, 2 and 3 denote the parameters of the respective flows 

behind them and 00 denotes the parameters of the undisturbed flow. 

The condition of regularity of the intersection of two plane shock waves in space when 

it gives rise to two shock waves is, that in the plane considered, the angle 6 should not 

exceed the maximum angle of the wedge possessing an attached shock wave in the flow 

whose velocity behind the shock wave is M,’ I 

This magnitude a,,, and the corresponding value of yt maX, can be found by numerica 

methods from the system (4) and (5) for i = 1 and 2, and they depend only onMI’ = M, sin 

(see fig. 2 where rr= TImin)* 

In space, angles of rotation of velocity across the incident and reflected waves are 

different from each other, and the final direction of velocity behind the considered system 

of shock waves (with the slip velocity taken into account) does not coincide with the 

initial direction of the undisturbed flow. Both vectors however, are parallel to the plane 

of symmetry, and the angle 7 between them is equal to 

z=p-6, e = tan --I ($q3) 

where 0 is the angle between the downstream velocity vector and the line of inter- 

section of the shock waves, and the value of M corresponding to the above velocity, is 
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MS 
Ma’ 

=sin 

The angle between the planes of reflected shock waves 

B!iid isequalto 2&r-Q,whiletheirinclinationtothe 
velocity vector immediately in front of them, is 

/ 1 In the plane case of intersection of two shock waves 
0 ’ (P = r/p Jr) only one of the solutions of (4) corresponds 

FIG. 5 to the weak reflected wave with supersonic velocity behind 

it, consequently the solution of the problem is unique. 

In the three-dimensional space, both 
solutions of (4), ytfl) and ya”’ for the 

reflected wave in the auxiliary plane 

correspond to weak shock waves, if 

MS-> sin 6. Assuming 

sin 8,,, = 1K,&V 

we obtain, from (9) 

(12) 

FIG. 6 

co9 (h - 8) COB (#) - 8) 
8 

I.. tml R_. (13) 

Figure 3 gives the values of pm,, 

for M, >, 2. When YI = ‘rrrntnr and 

s=o , we have yr 0) = Kn. and the con- 

sidered system of shock waves degenerates, 

in the second solution, into a single planar 

shock wave inclined to the velocity of the 

undisturbed flow at the angle 8. When 

rl=Tl max t both solutions coincide, 
Ta@) z y,kl) fi = fJ = ‘& Jt* 

The inequalities (1) and (13) limit 

the region of variation of defining parameters, in which the problem of regular intersection 

of two shock waves in apace, has two solutions with weak reflected shock waves, behind 

both of which the velocity is supersonic. 

In one of them, the projection of this velocity on the plane perpendicular to the line 

of intersection of the shock waves is also supersonic (first solution M,‘(t)> l), while 

in the other the projection is subsonic (second solution - MS’(*) < 1). 

Solid lines on fig. 4 show these regions for M, = 20 and 5. The region situated to the 
right of the curve y1 max corresponds to the cases with the Mach reflection of the wave. 

Broken lines map the region in which only one solution with a weak reflected shock wave 

exists, and for which the projection of the resultant velocity onto the plane perpendicular 

to the line of intersection of the shock waves, is supersonic. 
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FIG. 7 

Corresponding values of M,(l) for the first 

solution are given on fig. 5, while fig. 6 shows, 

for both solutions, the angles of inclination 
$1 of the velocity vector behind the shock 

waves, to the velocity of the undisturbed flow. 

Pressure, density and temperature depend, 

within the region of the considered flow, together 

with tan p/tan 8, on the combination of the de- 

fining parameters M; = Urn sin /I? and yr . Figs. 7 and 8 give the density and pressure in 

the region behind the reflected waves for the first and second solution, solid lines referring 

to the first solution y1 (l) broken lines to the second one y2 c2). It is clear that in the sec- 

ond solution (in which the projection of the velocity component on the plane perpendicular 

to the line of intersection of the shock waves is subsonic), variation of the parameters of 

the flow in the system of shock waves is much larger, then in the first solution. 

Second solution in this region corresponds 

to a strong reflected shock wave, behind which 

the velocity is subsonic. The line separating 

these two regions corresponds to the case 

when the velocity behind the reflected shock 

waves is. in the second solution, equal to the 

speed of sound M,(2) = 1. 

FIG. 8 

This, or some other solution, should exist for the flow around the surface formed by 

the velocity vectors of the field of the corresponding flow. Fig. 9 shows an example of 

such a body consisting of four plane forces, edges of which support the shock waves shown 

on the figure with broken lines. 

Streamlines on the faces are indicated by means of arrows. The edge OC coincides 

with the direction of the velocity behind the reflected waves. Various surfaces with differ- 

ent positions of the faces OBC, correspond to various solutions. Their transverse cross- 

sections are shown on fig. 9. 

For some shock wave configurations, the surface AB,C, degenerates into a V-shaped 
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wing, in vicinity of the edge OC of which, a region of excess pressure situated behind 

the reflected wave, exists. 

A necessary condition for evolving a numerical computation scheme for the flow in 

proximity of the body is, that the perturbations originating on its trailing edge should not 

intersect any faces and, that the pressure on these faces should be constant. Consider- 

ations of the regions of perturbation originating from the trailing edges of the faces OAB 

and OBC (see broken lines on fig. 9) lead us to conclusion that the condition for the 

existence of a flow solvable by numerical methods. is 

ocOIG sin(al+v)sin(aa+W 
‘OA sin (al + v - cp) sin a2 (14) 

v+al<s, *++a<n 
Here cp ad 9 = fi 0% ‘rl, P9 Mm) are the face angles at the apex of the body, U, and 

a, are the Mach angles in the region behind the incident and reflected shock waves (with 

the slip belocity taken into account), Y = f (9, ‘fr, fi, M,) is the inclination of the 

velocity vector on the face OAB to the front edge 0.4. For regulat intersection of the shock 

waves, we always have v >aI. 
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